Jordan Pair
A Jordan pair is a generalization of a Jordan triple system involving two vector spaces V+ and V−. The trilinear form is then replaced by a pair of trilinear forms
which are often viewed as quadratic maps V+ → Hom(V−, V+) and V− → Hom(V+, V−). The other Jordan axiom (apart from symmetry) is likewise replaced by two axioms, one being
and the other being the analogue with + and − subscripts exchanged.
As in the case of Jordan triple systems, one can define, for u in V− and v in V+, a linear map
and similarly L−. The Jordan axioms (apart from symmetry) may then be written
which imply that the images of L+ and L− are closed under commutator brackets in End(V+) and End(V−). Together they determine a linear map
whose image is a Lie subalgebra, and the Jordan identities become Jacobi identities for a graded Lie bracket on
so that conversely, if
is a graded Lie algebra, then the pair is a Jordan pair, with brackets
Jordan triple systems are Jordan pairs with V+ = V− and equal trilinear forms. Another important case occurs when V+ and V− are dual to one another, with dual trilinear forms determined by an element of
These arise in particular when above is semisimple, when the Killing form provides a duality between and .
Read more about this topic: Triple System
Famous quotes containing the words jordan and/or pair:
“Like a lot of Black women, I have always had to invent the power my freedom requires ...”
—June Jordan (b. 1936)
“To get a man soundly saved it is not enough to put on him a pair of new breeches, to give him regular work, or even to give him a University education. These things are all outside a man, and if the inside remains unchanged you have wasted your labour. You must in some way or other graft upon the mans nature a new nature, which has in it the element of the Divine.”
—William Booth (18291912)