In topology and related branches of mathematics, a totally bounded space is a space that can be covered by finitely many subsets of any fixed "size" (where the meaning of "size" depends on the given context). The smaller the size fixed, the more subsets may be needed, but any specific size should require only finitely many subsets. A related notion is a totally bounded set, in which only a subset of the space needs to be covered. Every subset of a totally bounded space is a totally bounded set; but even if a space is not totally bounded, some of its subsets still will be.
The term precompact (or pre-compact) is sometimes used with the same meaning, but `pre-compact' is also used to mean relatively compact. In a complete metric space these meanings coincide but in general they do not. See also use of the axiom of choice below.
Read more about Totally Bounded Space: Definition For A Metric Space, Definitions in Other Contexts, Examples and Nonexamples, Relationships With Compactness and Completeness, Use of The Axiom of Choice
Famous quotes containing the words totally, bounded and/or space:
“Cultivate the habit of thinking ahead, and of anticipating the necessary and immediate consequences of all your actions.... Likewise in your pleasures, ask yourself what such and such an amusement leads to, as it is essential to have an objective in everything you do. Any pastime that contributes nothing to bodily strength or to mental alertness is a totally ridiculous, not to say, idiotic, pleasure.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“Me, whats that after all? An arbitrary limitation of being bounded by the people before and after and on either side. Where they leave off, I begin, and vice versa.”
—Russell Hoban (b. 1925)
“At first thy little being came:
If nothing once, you nothing lose,
For when you die you are the same;
The space between, is but an hour,
The frail duration of a flower.”
—Philip Freneau (17521832)