Totally Bounded Space - Use of The Axiom of Choice

Use of The Axiom of Choice

The properties of total boundedness mentioned above rely in part on the axiom of choice. In the absence of the axiom of choice, total boundedness and precompactness must be distinguished. That is, we define total boundedness in elementary terms but define precompactness in terms of compactness and Cauchy completion. It remains true (that is, the proof does not require choice) that every precompact space is totally bounded; in other words, if the completion of a space is compact, then that space is totally bounded. But it is no longer true (that is, the proof requires choice) that every totally bounded space is precompact; in other words, the completion of a totally bounded space might not be compact in the absence of choice.

Read more about this topic:  Totally Bounded Space

Famous quotes containing the words axiom and/or choice:

    “You are bothered, I suppose, by the idea that you can’t possibly believe in miracles and mysteries, and therefore can’t make a good wife for Hazard. You might just as well make yourself unhappy by doubting whether you would make a good wife to me because you can’t believe the first axiom in Euclid. There is no science which does not begin by requiring you to believe the incredible.”
    Henry Brooks Adams (1838–1918)

    We hold our hate too choice a thing
    For light and careless lavishing.
    Sir William Watson (1858–1936)