Topological String Theory

In theoretical physics, topological string theory is a simplified version of string theory. The operators in topological string theory represent the algebra of operators in the full string theory that preserve a certain amount of supersymmetry. Topological string theory is obtained by a topological twist of the worldsheet description of ordinary string theory: the operators are given different spins. The operation is fully analogous to the construction of topological field theory which is a related concept. Consequently, there are no local degrees of freedom in topological string theory.

There are two main versions of topological string theory: the topological A-model and the topological B-model. The results of the calculations in topological string theory generically encode all holomorphic quantities within the full string theory whose values are protected by spacetime supersymmetry. Various calculations in topological string theory are closely related to Chern-Simons theory, Gromov-Witten invariants, mirror symmetry, geometric Langlands Program, and many other topics.

Topological string theory was established and is studied by physicists such as Edward Witten and Cumrun Vafa.

Read more about Topological String Theory:  Admissible Spacetimes, Applications

Famous quotes containing the words string and/or theory:

    The Indian remarked as before, “Must have hard wood to cook moose-meat,” as if that were a maxim, and proceeded to get it. My companion cooked some in California fashion, winding a long string of the meat round a stick and slowly turning it in his hand before the fire. It was very good. But the Indian, not approving of the mode, or because he was not allowed to cook it his own way, would not taste it.
    Henry David Thoreau (1817–1862)

    We have our little theory on all human and divine things. Poetry, the workings of genius itself, which, in all times, with one or another meaning, has been called Inspiration, and held to be mysterious and inscrutable, is no longer without its scientific exposition. The building of the lofty rhyme is like any other masonry or bricklaying: we have theories of its rise, height, decline and fall—which latter, it would seem, is now near, among all people.
    Thomas Carlyle (1795–1881)