Solving A Toeplitz System
A matrix equation of the form
is called a Toeplitz system if A is a Toeplitz matrix. If A is an Toeplitz matrix, then the system has only 2n−1 degrees of freedom, rather than n2. We might therefore expect that the solution of a Toeplitz system would be easier, and indeed that is the case.
Toeplitz systems can be solved by the Levinson algorithm in Θ(n2) time. Variants of this algorithm have been shown to be weakly stable (i.e. they exhibit numerical stability for well-conditioned linear systems). The algorithm can also be used to find the determinant of a Toeplitz matrix in O(n2) time.
A Toeplitz matrix can also be decomposed (i.e. factored) in O(n2) time. The Bareiss algorithm for an LU decomposition is stable. An LU decomposition gives a quick method for solving a Toeplitz system, and also for computing the determinant.
Algorithms that are asymptotically faster than those of Bareiss and Levinson have been described in the literature.
Read more about this topic: Toeplitz Matrix
Famous quotes containing the words solving a, solving and/or system:
“There are horrible people who, instead of solving a problem, tangle it up and make it harder to solve for anyone who wants to deal with it. Whoever does not know how to hit the nail on the head should be asked not to hit it at all.”
—Friedrich Nietzsche (18441900)
“Science is a dynamic undertaking directed to lowering the degree of the empiricism involved in solving problems; or, if you prefer, science is a process of fabricating a web of interconnected concepts and conceptual schemes arising from experiments and observations and fruitful of further experiments and observations.”
—James Conant (18931978)
“Never expect any recognition herethe system prohibits it. The cross is not affixed to the genius, no, the genius is affixed to the cross.”
—Franz Grillparzer (17911872)