Definition
To define the Todd class td(E) where E is a complex vector bundle on a topological space X, it is usually possible to limit the definition to the case of a Whitney sum of line bundles, by means of a general device of characteristic class theory, the use of Chern roots (aka, the splitting principle). For the definition, let
be the formal power series with the property that the coefficient of xn in Q(x)n+1 is 1 (where the Bi are Bernoulli numbers).
If E has the αi as its Chern roots, then
which is to be computed in the cohomology ring of X (or in its completion if one wants to consider infinite dimensional manifolds).
The Todd class can be given explicitly as a formal power series in the Chern classes as follows:
- td(E) = 1 + c1/2 + (c12+c2)/12 + c1c2/24 + (−c14 + 4c12c2 + c1c3 + 3c22 − c4)/720 + ...
where the cohomology classes ci are the Chern classes of E, and lie in the cohomology group H2i(X). If X is finite dimensional then most terms vanish and td(E) is a polynomial in the Chern classes.
Read more about this topic: Todd Class
Famous quotes containing the word definition:
“It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possessafter many mysterieswhat one loves.”
—François, Duc De La Rochefoucauld (16131680)
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)