Thioredoxin Reductase - Structure

Structure

E. coli thioredoxin reductase structure: In E. coli ThxR there is are two binding domains, one for FAD and another for NADPH. The connection between these two domains is a two-stranded anti-parallel f3-sheet. Each domain individually is very similar to the analogous domains in glutathione reductase, and lipoamide dehydrogenase but they relative orientation of these domains in ThxR is rotated by 66 degrees. This becomes significant in the enzyme mechanism of action which is described below. ThxR homo-dimerizes with the interface between the two monomers formed by three alpha-helicies and two loops. Each monomer can separately bind a molecule of thioredoxin.

  • Structure of E. coli ThxR dimer bound thioredoxin

  • Structure of E. coli ThxR with FAD and NADPH prosthetic groups labeled

Mammalian thioredoxin reductase structure: Mammalian TrxR structure is similar to E. coli. It contains a FAD and NADPH binding domain, and an interface between two monomer subunits. In mammalian ThxR there is an insertion in the FAD binding domain between two alpha helices which forms a small pair of beta strands. The active disulfide in the enzyme is located on one of these helices and thus the active disulfide bond is located in the FAD domain and not the NADPH domain as in E. coli and other prokaryotes.

  • Structure of human ThxR FAD and NADPH prosthetic groups

Read more about this topic:  Thioredoxin Reductase

Famous quotes containing the word structure:

    What is the structure of government that will best guard against the precipitate counsels and factious combinations for unjust purposes, without a sacrifice of the fundamental principle of republicanism?
    James Madison (1751–1836)

    When a house is tottering to its fall,
    The strain lies heaviest on the weakest part,
    One tiny crack throughout the structure spreads,
    And its own weight soon brings it toppling down.
    Ovid (Publius Ovidius Naso)

    Science is intimately integrated with the whole social structure and cultural tradition. They mutually support one other—only in certain types of society can science flourish, and conversely without a continuous and healthy development and application of science such a society cannot function properly.
    Talcott Parsons (1902–1979)