Tetrapod - Anatomical Features of Early Tetrapods

Anatomical Features of Early Tetrapods

The tetrapod's ancestral fish must have possessed similar traits to those inherited by the early tetrapods, including internal nostrils (to separate the breathing and feeding passages) and a large fleshy fin built on bones that could give rise to the tetrapod limb. The rhipidistian crossopterygians fulfill every requirement for this ancestry. Their palatal and jaw structures were identical to those of early tetrapods, and their dentition was identical too, with labyrinthine teeth fitting in a pit-and-tooth arrangement on the palate. The crossopterygian paired fins were smaller than tetrapod limbs, but the skeletal structure was very similar in that the crossopterygian had a single proximal bone (analogous to the humerus or femur), two bones in the next segment (forearm or lower leg), and an irregular subdivision of the fin, roughly comparable to the structure of the carpus / tarsus and phalanges of a hand.

The major difference between crossopterygians and early tetrapods was in relative development of front and back skull portions; the snout is much less developed than in most early tetrapods and the post-orbital skull is exceptionally longer than an amphibian's.

A great many kinds of early tetrapods lived during the Carboniferous period. Therefore, their ancestor would have lived earlier, during the Devonian period. Devonian Ichthyostega were the earliest of true tetrapods, with a skeleton that is directly comparable to that of rhipidistian ancestors. Early temnospondyls (Late Devonian to Early Mississippian) still had some ichthyostegid features such as similar skull bone patterns, labyrinthine tooth structure, the fish skull-hinge, pieces of gill structure between the cheek and shoulder, and the vertebral column. They had, however, lost several other fish features such as the fin rays in the tail.

In order to propagate in the terrestrial environment, certain challenges had to be overcome. The animal's body needed additional support, because buoyancy was no longer a factor. A new method of respiration was required in order to extract atmospheric oxygen, instead of oxygen dissolved in water. A means of locomotion would need to be developed to traverse distances between waterholes. Water retention was now important since it was no longer the living matrix, and it could be lost easily to the environment. Finally, new sensory input systems were required if the animal was to have any ability to function reasonably while on land.

Read more about this topic:  Tetrapod

Famous quotes containing the words features and/or early:

    All visible objects, man, are but as pasteboard masks. But in each event—in the living act, the undoubted deed—there, some unknown but still reasoning thing puts forth the mouldings of its features from behind the unreasoning mask. If man will strike, strike through the mask!
    Herman Melville (1819–1891)

    ... goodness is of a modest nature, easily discouraged, and when much elbowed in early life by unabashed vices, is apt to retire into extreme privacy, so that it is more easily believed in by those who construct a selfish old gentleman theoretically, than by those who form the narrower judgments based on his personal acquaintance.
    George Eliot [Mary Ann (or Marian)