Tensor Product of Modules - Relationship To Flat Modules

Relationship To Flat Modules

In general, is a bifunctor which accepts a right and a left R module pair as input, and assigns them to the tensor product in the category of abelian groups.

By fixing a right R module M, a functor arises, and symmetrically a left R module N could be fixed to create a functor . Unlike the Hom bifunctor, the tensor functor is covariant in both inputs.

It can be shown that M⊗- and -⊗N are always right exact functors, but not necessarily left exact. By definition, a module T is a flat module if T⊗- is an exact functor.

If {mi}iI and {nj}jJ are generating sets for M and N, respectively, then {minj}iI,jJ will be a generating set for MN. Because the tensor functor MR- sometimes fails to be left exact, this may not be a minimal generating set, even if the original generating sets are minimal.

When the tensor products are taken over a field F so that -⊗- is exact in both positions, and the generating sets are bases of M and N, it is true that indeed forms a basis for MF N.

Read more about this topic:  Tensor Product Of Modules

Famous quotes containing the words relationship to, relationship and/or flat:

    ... the Wall became a magnet for citizens of every generation, class, race, and relationship to the war perhaps because it is the only great public monument that allows the anesthetized holes in the heart to fill with a truly national grief.
    Adrienne Rich (b. 1929)

    Artists have a double relationship towards nature: they are her master and her slave at the same time. They are her slave in so far as they must work with means of this world so as to be understood; her master in so far as they subject these means to their higher goals and make them subservient to them.
    Johann Wolfgang Von Goethe (1749–1832)

    ... we see the poor as a mass of shadow, painted in one flat grey wash, at the remote edges of our sunshine.
    Albion Fellows Bacon (1865–1933)