Temperature Gradient - Mathematical Description

Mathematical Description

Assuming that the temperature T is an intensive quantity, i.e., a single-valued, continuous and differentiable function of three-dimensional space (often called a scalar field), i.e., that

where x, y and z are the coordinates of the location of interest, then the temperature gradient is the vector quantity defined as


\nabla T = \begin{pmatrix}
{\frac{\partial T}{\partial x}},
{\frac{\partial T}{\partial y}},
{\frac{\partial T}{\partial z}}
\end{pmatrix}

...

Read more about this topic:  Temperature Gradient

Famous quotes containing the words mathematical and/or description:

    What is history? Its beginning is that of the centuries of systematic work devoted to the solution of the enigma of death, so that death itself may eventually be overcome. That is why people write symphonies, and why they discover mathematical infinity and electromagnetic waves.
    Boris Pasternak (1890–1960)

    I fancy it must be the quantity of animal food eaten by the English which renders their character insusceptible of civilisation. I suspect it is in their kitchens and not in their churches that their reformation must be worked, and that Missionaries of that description from [France] would avail more than those who should endeavor to tame them by precepts of religion or philosophy.
    Thomas Jefferson (1743–1826)