Definition and Examples
A formula of propositional logic is a tautology if the formula itself is always true regardless of which valuation is used for the propositional variables.
There are infinitely many tautologies. Examples include:
- ("A or not A"), the law of the excluded middle. This formula has only one propositional variable, A. Any valuation for this formula must, by definition, assign A one of the truth values true or false, and assign A the other truth value.
- ("if A implies B then not-B implies not-A", and vice versa), which expresses the law of contraposition.
- ("if not-A implies both B and its negation not-B, then not-A must be false, then A must be true"), which is the principle known as reductio ad absurdum.
- ("if not both A and B, then either not-A or not-B", and vice versa), which is known as de Morgan's law.
- ("if A implies B and B implies C, then A implies C"), which is the principle known as syllogism.
- (if at least one of A or B is true, and each implies C, then C must be true as well), which is the principle known as proof by cases.
A minimal tautology is a tautology that is not the instance of a shorter tautology.
- is a tautology, but not a minimal one, because it is an instantiation of .
Read more about this topic: Tautology (logic)
Famous quotes containing the words definition and/or examples:
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)