Systemin - Receptors

Receptors

Exceedingly small amounts of tomato systemin are active, femto-molar concentrations of the peptide are sufficient to elicit a response at the whole plant level, making it one of the most potent gene activators identified. A receptor for tomato systemin was identified as a 160KDa leucine-rich repeat receptor like kinase (LRR-RLK), SR160. After being isolated it was found that was very similar in structure to BRI1 from A. thaliana, the receptor that brassinolides bind to on the cell membrane. This was the first receptor which was found to be able to bind both a steroid and a peptide ligand and also to be involved in both defensive and developmental responses. Recent studies have found that the initial conclusion that BRI1 is the receptor for tomato systemin may be incorrect. In cu3 mutants of tomato, a null allele with a stop codon present in the extracellular LRR domain of BRI1 prevents the receptor from being localised correctly and it also lacks the kinase domain, required for signalling. These mutants are insensitive to brassinolide yet still respond to tomato systemin by producing protease inhibitors and causing an alkalisation response. This led Holton et al. to suggest that there is another mechanism by which systemin is perceived. Further investigation showed that binding of systemin to BRI1 does not cause the receptor to become phosphorylated, as when brassinolides bind, suggesting that it does not transduce a signal. When BRI1 is silenced in tomato, the plants have a similar phenotype to cu3 mutants yet are still able to respond normally to systemin, strengthening the view that BRI1 is not the systemin receptor.

In 1994, tomato systemin was found to bind to a 50KDa protein in the cell membrane of tomato. The protein has a structure similar to proteases of the Kex2p-like prohormone convertases. This led Schaller and Ryan to suggest that it is not a receptor, but instead is involved in the processing of ProSys into the active form, or the degradation of Sys. Synthetic forms of tomato systemin, with substituted amino acids at the predicted dibasic cleavage site, remained stable in cell cultures for longer than the native form. Later studies have noted that the enzymes responsible for processing ProSys remain unidentified. No further research has been reported on the 50KDa protein to date, and the gene has not been identified.

No receptors for HypSys have so far been reported, but it is thought that they are perceived on the cell membrane by a LRR-RLK.

The receptor for AtPep1 has been identified as a 170KDa LRR-RLK and has been named AtPEPR1. AtPep1 is active at 0.1 nano-molar (nM) concentrations and the receptor saturates at 1nM. An analysis of the structure of the AtPEPR1 receptor has shown that it is a member of the LRR XI subfamily of LRR-RLKs in A. thaliana which includes the receptor for another peptide hormone CLAVATA3. Transforming tobacco cell cultures with AtPEPR1 allowed them to respond to AtPep1 in an alkalisation assay, whereas normal tobacco did not show such a response. BRI1-associated receptor kinase 1 (BAK1) is an LRR-RLK found in A. thaliana, which has been proposed to function as an adaptor protein that is required for the proper functioning of other RLKs. Yeast two-hybrid assays have shown that AtPEPR1 and its closest analog, AtPEPR2, interact with BAK1.

Read more about this topic:  Systemin

Famous quotes containing the word receptors:

    Our talk of external things, our very notion of things, is just a conceptual apparatus that helps us to foresee and control the triggerings of our sensory receptors in the light of previous triggering of our sensory receptors.
    Willard Van Orman Quine (b. 1908)