Superperfect Group - Definition

Definition

The first homology group of a group is the abelianization of the group itself, since the homology of a group G is the homology of any Eilenberg-MacLane space of type K(G, 1); the fundamental group of a K(G, 1) is G, and the first homology of K(G, 1) is then abelianization of its fundamental group. Thus, if a group is superperfect, then it is perfect.

A finite perfect group is superperfect if and only if it is its own universal central extension (UCE), as the second homology group of a perfect group parametrizes central extensions.

Read more about this topic:  Superperfect Group

Famous quotes containing the word definition:

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)