Superperfect Group

Superperfect Group

In mathematics, in the realm of group theory, a group is said to be superperfect when its first two homology groups are trivial: H1(G, Z) = H2(G, Z) = 0. This is stronger than a perfect group, which is one whose first homology group vanishes. In more classical terms, a superperfect group is one whose abelianization and Schur multiplier both vanish; abelianization equals the first homology, while the Schur multiplier equals the second homology.

Read more about Superperfect Group:  Definition, Examples

Famous quotes containing the word group:

    There is nothing in the world that I loathe more than group activity, that communal bath where the hairy and slippery mix in a multiplication of mediocrity.
    Vladimir Nabokov (1899–1977)