Sum Rule in Integration

In calculus, the sum rule in integration states that the integral of a sum of two functions is equal to the sum of their integrals. It is of particular use for the integration of sums, and is one part of the linearity of integration.

As with many properties of integrals in calculus, the sum rule applies both to definite integrals and indefinite integrals. For indefinite integrals, the sum rule states

Read more about Sum Rule In Integration:  Application To Indefinite Integrals, Application To Definite Integrals, The Proof of The Rule

Famous quotes containing the words sum, rule and/or integration:

    The sum of the whole matter is this, that our civilization cannot survive materially unless it be redeemed spiritually.
    Woodrow Wilson (1856–1924)

    If all political power be derived only from Adam, and be to descend only to his successive heirs, by the ordinance of God and divine institution, this is a right antecedent and paramount to all government; and therefore the positive laws of men cannot determine that, which is itself the foundation of all law and government, and is to receive its rule only from the law of God and nature.
    John Locke (1632–1704)

    The more specific idea of evolution now reached is—a change from an indefinite, incoherent homogeneity to a definite, coherent heterogeneity, accompanying the dissipation of motion and integration of matter.
    Herbert Spencer (1820–1903)