Substitution Model - Mechanistic Vs. Empirical Models

Mechanistic Vs. Empirical Models

A main difference in evolutionary models is how many parameters are estimated every time for the data set under consideration and how many of them are estimated once on a large data set. Mechanistic models describe all substitutions as a function of a number of parameters which are estimated for every data set analyzed, preferably using maximum likelihood. This has the advantage that the model can be adjusted to the particularities of a specific data set (e.g. different composition biases in DNA). Problems can arise when too many parameters are used, particularly if they can compensate for each other. Then it is often the case that the data set is too small to yield enough information to estimate all parameters accurately.

Empirical models are created by estimating many parameters (typically all entries of the rate matrix and the character frequencies, see the GTR model above) from a large data set. These parameters are then fixed and will be reused for every data set. This has the advantage that those parameters can be estimated more accurately. Normally, it is not possible to estimate all entries of the substitution matrix from the current data set only. On the downside, the estimated parameters might be too generic and do not fit a particular data set well enough.

With the large-scale genome sequencing still producing very large amounts of DNA and protein sequences, there is enough data available to create empirical models with any number of parameters. Because of the problems mentioned above, the two approaches are often combined, by estimating most of the parameters once on large-scale data, while a few remaining parameters are then adjusted to the data set under consideration. The following sections give an overview of the different approaches taken for DNA, protein or codon-based models.

Read more about this topic:  Substitution Model

Famous quotes containing the words empirical and/or models:

    To develop an empiricist account of science is to depict it as involving a search for truth only about the empirical world, about what is actual and observable.... It must involve throughout a resolute rejection of the demand for an explanation of the regularities in the observable course of nature, by means of truths concerning a reality beyond what is actual and observable, as a demand which plays no role in the scientific enterprise.
    Bas Van Fraassen (b. 1941)

    Today it is not the classroom nor the classics which are the repositories of models of eloquence, but the ad agencies.
    Marshall McLuhan (1911–1980)