Subharmonic Function - Subharmonic Functions On Riemannian Manifolds

Subharmonic Functions On Riemannian Manifolds

Subharmonic functions can be defined on an arbitrary Riemannian manifold.

Definition: Let M be a Riemannian manifold, and an upper semicontinuous function. Assume that for any open subset, and any harmonic function f1 on U, such that on the boundary of U, the inequality holds on all U. Then f is called subharmonic.

This definition is equivalent to one given above. Also, for twice differentiable functions, subharmonicity is equivalent to the inequality, where is the usual Laplacian.

Read more about this topic:  Subharmonic Function

Famous quotes containing the word functions:

    If photography is allowed to stand in for art in some of its functions it will soon supplant or corrupt it completely thanks to the natural support it will find in the stupidity of the multitude. It must return to its real task, which is to be the servant of the sciences and the arts, but the very humble servant, like printing and shorthand which have neither created nor supplanted literature.
    Charles Baudelaire (1821–1867)