String Duality

String duality is a class of symmetries in physics that link different string theories, theories which assume that the fundamental building blocks of the universe are strings instead of point particles.

Before the so-called "duality revolution" there were believed to be five distinct versions of string theory, plus the (unstable) bosonic and gluonic theories.

String Theories
Type Spacetime dimensions
Details
Bosonic 26 Only bosons, no fermions means only forces, no matter, with both open and closed strings; major flaw: a particle with imaginary mass, called the tachyon, representing an instability in the theory.
I 10 Supersymmetry between forces and matter, with both closed strings and open strings, no tachyon, group symmetry is SO(32)
IIA 10 Supersymmetry between forces and matter, with closed strings and open strings bound to D-branes, no tachyon, massless fermions spin both ways (nonchiral)
IIB 10 Supersymmetry between forces and matter, with closed strings and open strings bound to D-branes, no tachyon, massless fermions only spin one way (chiral)
HO 10 Supersymmetry between forces and matter, with closed strings only, no tachyon, heterotic, meaning right moving and left moving strings differ, group symmetry is SO(32)
HE 10 Supersymmetry between forces and matter, with closed strings only, no tachyon, heterotic, meaning right moving and left moving strings differ, group symmetry is E8×E8

Note that in the type IIA and type IIB string theories closed strings are allowed to move everywhere throughout the ten-dimensional space-time (called the bulk), while open strings have their ends attached to D-branes, which are membranes of lower dimensionality (their dimension is odd - 1,3,5,7 or 9 - in type IIA and even - 0,2,4,6 or 8 - in type IIB, including the time direction).

Before the 1990s, string theorists believed there were five distinct superstring theories: type I, types IIA and IIB, and the two heterotic string theories (SO(32) and E8×E8). The thinking was that out of these five candidate theories, only one was the actual theory of everything, and that theory was the theory whose low energy limit, with ten dimensions spacetime compactified down to four, matched the physics observed in our world today. It is now known that the five superstring theories are not fundamental, but are instead different limits of a more fundamental theory, dubbed M-theory. These theories are related by transformations called dualities. If two theories are related by a duality transformation, each observable of the first theory can be mapped in some way to the second theory to yield equivalent predictions. The two theories are then said to be dual to one another under that transformation. Put differently, the two theories are two mathematically different descriptions of the same phenomena. A simple example of a duality is the equivalence of particle physics upon replacing matter with antimatter; describing our universe in terms of anti-particles would yield identical predictions for any possible experiment.

String dualities often link quantities that appear to be separate: Large and small distance scales, strong and weak coupling strengths. These quantities have always marked very distinct limits of behavior of a physical system, in both classical field theory and quantum particle physics. But strings can obscure the difference between large and small, strong and weak, and this is how these five very different theories end up being related.

Read more about String Duality:  T-duality, S-duality, See Also

Famous quotes containing the word string:

    First you find a little thread, a little thread leads you to a string, and the string leads you to a rope. And from the rope you hang by the ... neck.
    —A.I. (Albert Isaac)