Strict Weak Ordering - Representing Weak Orderings By Functions

Representing Weak Orderings By Functions

If X is any set and f a real-valued function on X then f induces a strict weak order on X by setting

  • a < b if and only if f(a) < f(b)

The associated total preorder is given by

  • a b if and only if f(a) ≤ f(b)

and the associated equivalence by

  • a b if and only if f(a) = f(b)

The relations do not change when f is replaced by g f (composite function), where g is a strictly increasing real-valued function defined on at least the range of f.

Thus e.g. a utility function defines a preference relation.

If X is finite or countable, every weak order can be represented by a function in this way (see, e.g., Roberts 1979, Theorem 3.1). However, there exist strict weak orders that have no corresponding real function. For example, there is no such function for the lexicographic order on Rn. Thus, while in most preference relation models the relation defines a utility function up to order-preserving transformations, there is no such function for lexicographic preferences.

More generally, if X is a set, and Y is a set with a strict weak ordering "<", and f a function from X to Y, then f induces a strict weak ordering on X by setting

  • a < b if and only if f(a) < f(b)

The associated total preorder is given by

  • a b if and only if f(a) f(b)

and the associated equivalence by

  • a b if and only if f(a) f(b)

f is not necessarily an injective function, so for example a class of 2 equivalent elements on Y may induce a class of 5 equivalent elements on X. Also f is not necessarily an surjective function, so a class of 2 equivalent elements on Y may induce a class of only one element on X, or no class at all. There is a corresponding injective function g that maps the partition on X to that on Y. Thus, in the case of finite partitions, the number of classes in X is less than or equal to the number of classes on Y.

Read more about this topic:  Strict Weak Ordering

Famous quotes containing the words representing, weak and/or functions:

    Brave people may be persuaded to an action by representing it as being more dangerous than it really is.
    Friedrich Nietzsche (1844–1900)

    Whose are the truly labored sentences? From the weak and flimsy periods of the politician and literary man, we are glad to turn even to the description of work, the simple record of the month’s labor in the farmer’s almanac, to restore our tone and spirits.
    Henry David Thoreau (1817–1862)

    When Western people train the mind, the focus is generally on the left hemisphere of the cortex, which is the portion of the brain that is concerned with words and numbers. We enhance the logical, bounded, linear functions of the mind. In the East, exercises of this sort are for the purpose of getting in tune with the unconscious—to get rid of boundaries, not to create them.
    Edward T. Hall (b. 1914)