Stochastic Differential Equation - Use in Probability and Mathematical Finance

Use in Probability and Mathematical Finance

The notation used in probability theory (and in many applications of probability theory, for instance mathematical finance) is slightly different. This notation makes the exotic nature of the random function of time in the physics formulation more explicit. It is also the notation used in publications on numerical methods for solving stochastic differential equations. In strict mathematical terms, can not be chosen as a usual function, but only as a generalized function. The mathematical formulation treats this complication with less ambiguity than the physics formulation.

A typical equation is of the form

where denotes a Wiener process (Standard Brownian motion). This equation should be interpreted as an informal way of expressing the corresponding integral equation

The equation above characterizes the behavior of the continuous time stochastic process Xt as the sum of an ordinary Lebesgue integral and an Itō integral. A heuristic (but very helpful) interpretation of the stochastic differential equation is that in a small time interval of length δ the stochastic process Xt changes its value by an amount that is normally distributed with expectation μ(Xt, t) δ and variance σ(Xt, tδ and is independent of the past behavior of the process. This is so because the increments of a Wiener process are independent and normally distributed. The function μ is referred to as the drift coefficient, while σ is called the diffusion coefficient. The stochastic process Xt is called a diffusion process, and is usually a Markov process.

The formal interpretation of an SDE is given in terms of what constitutes a solution to the SDE. There are two main definitions of a solution to an SDE, a strong solution and a weak solution. Both require the existence of a process Xt that solves the integral equation version of the SDE. The difference between the two lies in the underlying probability space (Ω, F, Pr). A weak solution consists of a probability space and a process that satisfies the integral equation, while a strong solution is a process that satisfies the equation and is defined on a given probability space.

An important example is the equation for geometric Brownian motion

which is the equation for the dynamics of the price of a stock in the Black Scholes options pricing model of financial mathematics.

There are also more general stochastic differential equations where the coefficients μ and σ depend not only on the present value of the process Xt, but also on previous values of the process and possibly on present or previous values of other processes too. In that case the solution process, X, is not a Markov process, and it is called an Itō process and not a diffusion process. When the coefficients depends only on present and past values of X, the defining equation is called a stochastic delay differential equation.

Read more about this topic:  Stochastic Differential Equation

Famous quotes containing the words probability, mathematical and/or finance:

    Crushed to earth and rising again is an author’s gymnastic. Once he fails to struggle to his feet and grab his pen, he will contemplate a fact he should never permit himself to face: that in all probability books have been written, are being written, will be written, better than anything he has done, is doing, or will do.
    Fannie Hurst (1889–1968)

    All science requires mathematics. The knowledge of mathematical things is almost innate in us.... This is the easiest of sciences, a fact which is obvious in that no one’s brain rejects it; for laymen and people who are utterly illiterate know how to count and reckon.
    Roger Bacon (c. 1214–c. 1294)

    There is an enormous chasm between the relatively rich and powerful people who make decisions in government, business, and finance and our poorer neighbors who must depend on these decisions to alleviate the problems caused by their lack of power and influence.
    Jimmy Carter (James Earl Carter, Jr.)