Stiffness Matrix - The Stiffness Matrix For Other Problems

The Stiffness Matrix For Other Problems

Determining the stiffness matrix for other PDE follows essentially the same procedure, but it can be complicated by the choice of boundary conditions. As a more complex example, consider the elliptic equation

where A(x) = akl(x) is a positive-definite matrix defined for each point x in the domain. We impose the Robin boundary condition

where νk is the component of the unit outward normal vector ν in the k-th direction. The system to be solved is

as can be shown using an analogue of Green's identity. The coefficients ui are still found by solving a system of linear equations, but the matrix representing the system is markedly different from that for the ordinary Poisson problem.

In general, to each scalar elliptic operator L of order 2k, there is associated a bilinear form B on the Sobolev space Hk, so that the weak formulation of the equation Lu = f is

for all functions v in Hk. Then the stiffness matrix for this problem is

Read more about this topic:  Stiffness Matrix

Famous quotes containing the words stiffness, matrix and/or problems:

    Everything ponderous, viscous, and solemnly clumsy, all long- winded and boring types of style are developed in profuse variety among Germans—forgive me the fact that even Goethe’s prose, in its mixture of stiffness and elegance, is no exception, being a reflection of the “good old time” to which it belongs, and a reflection of German taste at a time when there still was a “German taste”Ma rococo taste in moribus et artibus.
    Friedrich Nietzsche (1844–1900)

    “The matrix is God?”
    “In a manner of speaking, although it would be more accurate ... to say that the matrix has a God, since this being’s omniscience and omnipotence are assumed to be limited to the matrix.”
    “If it has limits, it isn’t omnipotent.”
    “Exactly.... Cyberspace exists, insofar as it can be said to exist, by virtue of human agency.”
    William Gibson (b. 1948)

    All problems are finally scientific problems.
    George Bernard Shaw (1856–1950)