Stiffness Matrix

The stiffness matrix is the n-element square matrix A defined by

By defining the vector F with components Fi = (φi, f), the coefficients ui are determined by the linear system AU = F. The stiffness matrix is symmetric, i.e. Aij = Aji, so all its eigenvalues are real. Moreover, it is a strictly positive-definite matrix, so that the system AU = F always has a unique solution. (For other problems, these nice properties will be lost.)

Note that the stiffness matrix will be different depending on the computational grid used for the domain and what type of finite element is used. For example, the stiffness matrix when piecewise quadratic finite elements are used will have more degrees of freedom than piecewise linear elements.

Read more about Stiffness Matrix:  The Stiffness Matrix For Other Problems, Practical Assembly of The Stiffness Matrix

Famous quotes containing the words stiffness and/or matrix:

    Everything ponderous, viscous, and solemnly clumsy, all long- winded and boring types of style are developed in profuse variety among Germans—forgive me the fact that even Goethe’s prose, in its mixture of stiffness and elegance, is no exception, being a reflection of the “good old time” to which it belongs, and a reflection of German taste at a time when there still was a “German taste”Ma rococo taste in moribus et artibus.
    Friedrich Nietzsche (1844–1900)

    As all historians know, the past is a great darkness, and filled with echoes. Voices may reach us from it; but what they say to us is imbued with the obscurity of the matrix out of which they come; and try as we may, we cannot always decipher them precisely in the clearer light of our day.
    Margaret Atwood (b. 1939)