Stiff Equation - Multistep Methods

Multistep Methods

Linear multistep methods have the form

Applied to the test equation, they become

which can be simplified to

where z = hk. This is a linear recurrence relation. The method is A-stable if all solutions {yn} of the recurrence relation converge to zero when Re z < 0. The characteristic polynomial is

All solutions converge to zero for a given value of z if all solutions w of Φ(z,w) = 0 lie in the unit circle..

The region of absolute stability for a multistep method of the above form is then the set of all for which all w such that Φ(z,w) = 0 satisfy |w| < 1. Again, if this set contains the left-half plane, the multi-step method is said to be A-stable.

Read more about this topic:  Stiff Equation

Famous quotes containing the word methods:

    There are souls that are incurable and lost to the rest of society. Deprive them of one means of folly, they will invent ten thousand others. They will create subtler, wilder methods, methods that are absolutely DESPERATE. Nature herself is fundamentally antisocial, it is only by a usurpation of powers that the organized body of society opposes the natural inclination of humanity.
    Antonin Artaud (1896–1948)