Stepwise Regression - Model Accuracy

Model Accuracy

A way to test for errors in models created by step-wise regression, is to not rely on the model's F-statistic, significance, or multiple-r, but instead assess the model against a set of data that was not used to create the model. This is often done by building a model based on a sample of the dataset available (e.g., 70%) and use the remaining 30% dataset to assess the accuracy of the model. Accuracy is then often measured as the actual standard error (Se), MAPE, or mean error between the predicted value and the actual value in the hold-out sample. This method is particularly valuable when data is collected in different settings (e.g., time, social) or when models are assumed to be generalizable.

Read more about this topic:  Stepwise Regression

Famous quotes containing the words model and/or accuracy:

    The playing adult steps sideward into another reality; the playing child advances forward to new stages of mastery....Child’s play is the infantile form of the human ability to deal with experience by creating model situations and to master reality by experiment and planning.
    Erik H. Erikson (20th century)

    As for farming, I am convinced that my genius dates from an older era than the agricultural. I would at least strike my spade into the earth with such careless freedom but accuracy as the woodpecker his bill into a tree.
    Henry David Thoreau (1817–1862)