Statistical Coupling Analysis - Applications

Applications

Ranganathan and Lockless originally developed SCA to examine thermodynamic (energetic) coupling of residue pairs in proteins. Using the PDZ domain family, they were able to identify a small network of residues that were energetically coupled to a binding site residue. The network consisted of both residues spatially close to the binding site in the tertiary fold, called contact pairs, and more distant residues that participate in longer-range energetic interactions. Later applications of SCA by the Ranganathan group on the GPCR, serine protease and hemoglobin families also showed energetic coupling in sparse networks of residues that cooperate in allosteric communication.

Statistical coupling analysis has also been used as a basis for computational protein design. In 2005, Russ et al. used an SCA for the WW domain to create artificial proteins with similar thermodynamic stability and structure to natural WW domains. The fact that 12 out of the 43 designed proteins with the same SCA profile as natural WW domains properly folded provided strong evidence that little information—only coupling information—was required for specifying the protein fold. This support for the SCA hypothesis was made more compelling considering that a) the successfully folded proteins had only 36% average sequence identity to natural WW folds, and b) none of the artificial proteins designed without coupling information folded properly. An accompanying study showed that the artificial WW domains were functionally similar to natural WW domains in ligand binding affinity and specificity.

In de novo protein structure prediction, it has been shown that, when combined with a simple residue-residue distance metric, SCA-based scoring can fairly accurately distinguish native from non-native protein folds.

Read more about this topic:  Statistical Coupling Analysis