Stationary Set - Classical Notion

Classical Notion

If is a cardinal of uncountable cofinality, and intersects every club set in then is called a stationary set. If a set is not stationary, then it is called a thin set. This notion should not be confused with the notion of a thin set in number theory.

If is a stationary set and is a club set, then their intersection is also stationary. Because if is any club set, then is a club set because the intersection of two club sets is club. Thus is non empty. Therefore must be stationary.

See also: Fodor's lemma

The restriction to uncountable cofinality is in order to avoid trivialities: Suppose has countable cofinality. Then is stationary in if and only if is bounded in . In particular, if the cofinality of is, then any two stationary subsets of have stationary intersection.

This is no longer the case if the cofinality of is uncountable. In fact, suppose is regular and is stationary. Then can be partitioned into many disjoint stationary sets. This result is due to Solovay. If is a successor cardinal, this result is due to Ulam and is easily shown by means of what is called an Ulam matrix.

Read more about this topic:  Stationary Set

Famous quotes containing the words classical and/or notion:

    Compare the history of the novel to that of rock ‘n’ roll. Both started out a minority taste, became a mass taste, and then splintered into several subgenres. Both have been the typical cultural expressions of classes and epochs. Both started out aggressively fighting for their share of attention, novels attacking the drama, the tract, and the poem, rock attacking jazz and pop and rolling over classical music.
    W. T. Lhamon, U.S. educator, critic. “Material Differences,” Deliberate Speed: The Origins of a Cultural Style in the American 1950s, Smithsonian (1990)

    This is the hope of many adolescent girls—to capture a parent’s heart with love for them as they are, as people. They reject the notion of being loved just because they are the child of the parent. They want the parent to fall in love with them all over again, because being new, they deserve a new love.
    Terri Apter (20th century)