Star Height Problem - Families of Regular Languages With Unbounded Star Height

Families of Regular Languages With Unbounded Star Height

The first question was answered in the negative when in 1963, Eggan gave examples of regular languages of star height n for every n. Here, the star height h(L) of a regular language L is defined as the minimum star height among all regular expressions representing L. The first few languages found by Eggan (1963) are described in the following, by means of giving a regular expression for each language:

\begin{alignat}{2}
e_1 &= a_1^* \\
e_2 &= \left(a_1^*a_2^*a_3\right)^*\\
e_3 &= \left(\left(a_1^*a_2^*a_3\right)^*\left(a_4^*a_5^*a_6\right)^*a_7\right)^*\\
e_4 &= \left(
\left(\left(a_1^*a_2^*a_3\right)^*\left(a_4^*a_5^*a_6\right)^*a_7\right)^*
\left(\left(a_8^*a_9^*a_{10}\right)^*\left(a_{11}^*a_{12}^*a_{13}\right)^*a_{14}\right)^*
a_{15}\right)^*
\end{alignat}

The construction principle for these expressions is that expression is obtained by concatenating two copies of, appropriately renaming the letters of the second copy using fresh alphabet symbols, concatenating the result with another fresh alphabet symbol, and then by surrounding the resulting expression with a Kleene star. The remaining, more difficult part, is to prove that for there is no equivalent regular expression of star height less than n; a proof is given in (Eggan 1963).

However, Eggan's examples use a large alphabet, of size 2n-1 for the language with star height n. He thus asked whether we can also find examples over binary alphabets. This was proved to be true shortly afterwards by Dejean & Schützenberger (1966). Their examples can be described by an inductively defined family of regular expressions over the binary alphabet as follows–cf. Salomaa (1981):

\begin{alignat}{2}
e_1 & = (ab)^* \\
e_2 & = \left(aa(ab)^*bb(ab)^*\right)^* \\
e_3 & = \left(aaaa \left(aa(ab)^*bb(ab)^*\right)^* bbbb \left(aa(ab)^*bb(ab)^*\right)^*\right)^* \\
\, & \cdots \\
e_{n+1} & = (\,\underbrace{a\cdots a}_{2^n}\, \cdot \, e_n\, \cdot\, \underbrace{b\cdots b}_{2^n}\, \cdot\, e_n \,)^*
\end{alignat}

Again, a rigorous proof is needed for the fact that does not admit an equivalent regular expression of lower star height. Proofs are given by (Dejean & Schützenberger 1966) and by (Salomaa 1981).

Read more about this topic:  Star Height Problem

Famous quotes containing the words families, regular, languages, star and/or height:

    Peer pressure is not a monolithic force that presses adolescents into the same mold. . . . Adolescents generally choose friend whose values, attitudes, tastes, and families are similar to their own. In short, good kids rarely go bad because of their friends.
    Laurence Steinberg (20th century)

    He hung out of the window a long while looking up and down the street. The world’s second metropolis. In the brick houses and the dingy lamplight and the voices of a group of boys kidding and quarreling on the steps of a house opposite, in the regular firm tread of a policeman, he felt a marching like soldiers, like a sidewheeler going up the Hudson under the Palisades, like an election parade, through long streets towards something tall white full of colonnades and stately. Metropolis.
    John Dos Passos (1896–1970)

    Wealth is so much the greatest good that Fortune has to bestow that in the Latin and English languages it has usurped her name.
    William Lamb Melbourne, 2nd Viscount (1779–1848)

    A rocket is an experiment; a star is an observation.
    José Bergamín (1895–1983)

    Men often treat others worse than they treat themselves, but they rarely treat anyone better. It is the height of folly to expect consideration and decency from a person who mistreats himself.
    Thomas Szasz (b. 1920)