Standard Molar Entropy - Chemistry

Chemistry

The standard molar entropy of a gas at STP includes contributions from:

  • The heat capacity of one mole of the solid from 0 K to the melting point (including heat absorbed in any changes between different crystal structures)
  • The latent heat of fusion of the solid.
  • The heat capacity of the liquid from the melting point to the boiling point.
  • The latent heat of vaporization of the liquid.
  • The heat capacity of the gas from the boiling point to room temperature.

Changes in entropy are associated with phase transitions and chemical reactions. Chemical equations make use of the standard molar entropy of reactants and products to find the standard entropy of reaction:

ΔS°rxn = S°productsS°reactants

The standard entropy of reaction helps determine whether the reaction will take place spontaneously. According to the second law of thermodynamics, a spontaneous reaction always results in an increase in total entropy of the system and its surroundings:

ΔStotal = ΔSsystem + ΔSsurroundings > 0

Read more about this topic:  Standard Molar Entropy

Famous quotes containing the word chemistry:

    Science with its retorts would have put me to sleep; it was the opportunity to be ignorant that I improved. It suggested to me that there was something to be seen if one had eyes. It made a believer of me more than before. I believed that the woods were not tenantless, but choke-full of honest spirits as good as myself any day,—not an empty chamber, in which chemistry was left to work alone, but an inhabited house,—and for a few moments I enjoyed fellowship with them.
    Henry David Thoreau (1817–1862)

    If thought makes free, so does the moral sentiment. The mixtures of spiritual chemistry refuse to be analyzed.
    Ralph Waldo Emerson (1803–1882)