In mathematics, stability theory addresses the stability of solutions of differential equations and of trajectories of dynamical systems under small perturbations of initial conditions. The heat equation, for example, is a stable partial differential equation because small perturbations of initial data lead to small variations in temperature at a later time as a result of the maximum principle. More generally, a theorem is stable if small changes in the hypothesis lead to small variations in the conclusion. One must specify the metric used to measure the perturbations when claiming a theorem is stable. In partial differential equations one may measure the distances between functions using Lp norms or the sup norm, while in differential geometry one may measure the distance between spaces using the Gromov-Hausdorff distance.
In dynamical systems, an orbit is called Lyapunov stable if the forward orbit of any point is in a small enough neighborhood or it stays in a small (but perhaps, larger) neighborhood. Various criteria have been developed to prove stability or instability of an orbit. Under favorable circumstances, the question may be reduced to a well-studied problem involving eigenvalues of matrices. A more general method involves Lyapunov functions.
Read more about Stability Theory: Overview in Dynamical Systems, Stability of Fixed Points, Lyapunov Function For General Dynamical Systems, See Also
Famous quotes containing the words stability and/or theory:
“Free from public debt, at peace with all the world, and with no complicated interests to consult in our intercourse with foreign powers, the present may be hailed as the epoch in our history the most favorable for the settlement of those principles in our domestic policy which shall be best calculated to give stability to our Republic and secure the blessings of freedom to our citizens.”
—Andrew Jackson (17671845)
“There is in him, hidden deep-down, a great instinctive artist, and hence the makings of an aristocrat. In his muddled way, held back by the manacles of his race and time, and his steps made uncertain by a guiding theory which too often eludes his own comprehension, he yet manages to produce works of unquestionable beauty and authority, and to interpret life in a manner that is poignant and illuminating.”
—H.L. (Henry Lewis)