Sprouting - Nutritional Information

Nutritional Information

Sprouts are said to be rich in digestible energy, bioavailable vitamins, minerals, amino acids, proteins, and phytochemicals, as these are necessary for a germinating plant to grow. These nutrients are essential for human health. To clarify, the nutritional changes upon germination & sprouting have been summarized below. Chavan and Kadam (1989) concluded that - “The desirable nutritional changes that occur during sprouting are mainly due to the breakdown of complex compounds into a more simple form, transformation into essential constituents and breakdown of nutritionally undesirable constituents.”

“The metabolic activity of resting seeds increases as soon as they are hydrated during soaking. Complex biochemical changes occur during hydration and subsequent sprouting. The reserve chemical constituents, such as protein, starch and lipids, are broken down by enzymes into simple compounds that are used to make new compounds.”

“Sprouting grains causes increased activities of hydrolytic enzymes, improvements in the contents of total proteins, fat, certain essential amino acids, total sugars, B-group vitamins, and a decrease in dry matter, starch and anti-nutrients. The increased contents of protein, fat, fibre and total ash are only apparent and attributable to the disappearance of starch. However, improvements in amino acid composition, B-group vitamins, sugars, protein and starch digestibilities, and decrease in phytates and protease inhibitors are the metabolic effects of the sprouting process.”

Increases in Protein Quality Chavan and Kadam (1989) stated - “Very complex qualitative changes are reported to occur during soaking and sprouting of seeds. The conversion of storage proteins of cereal grains into albumins and globulins during sprouting may improve the quality of cereal proteins. Many studies have shown an increase in the content of the amino acid Lysine with sprouting.”

“An increase in proteolytic activity during sprouting is desirable for nutritional improvement of cereals because it leads to hydrolysis of prolamins and the liberated amino acids such as glutamic and proline are converted to limiting amino acids such as lysine.”

Increases in Crude Fibre content Cuddeford (1989), based on data obtained by Peer and Leeson (1985), stated - “In sprouted barley, crude fibre, a major constituent of cell walls, increases both in percentage and real terms, with the synthesis of structural carbohydrates, such as cellulose and hemicellulose”. Chung et al. (1989) found that the fibre content increased from 3.75% in unsprouted barley seed to 6% in 5-day sprouts.”

Crude Protein and Crude Fibre changes in Barley Sprouted over a 7-day period

Crude Protein (% of DM) Crude Fibre (% of DM)
Original seed 12.7% 5.4%
Day 1 12.7% 5.6%
Day 2 13.0% 5.9%
Day 3 13.6% 5.8%
Day 4 13.4% 7.4%
Day 5 13.9% 9.7%
Day 6 14.0% 10.8%
Day 7 15.5% 14.1%

Source: Cuddeford (1989), based on data obtained by Peer and Leeson (1985).

Increase of protein is not due to new protein being manufactured by the germination process but by the washing out of starch and conversion to fiber -- increasing the relative proportion of protein.

Increases in Essential Fatty Acids

An increase in lipase activity has been reported in barley by MacLeod and White (1962), as cited by Chavan and Kadam (1989) . Increased lipolytic activity during germination and sprouting causes hydrolysis of triacylglycerols to glycerol and constituent fatty acids.

Increases in Vitamin content According to Chavan and Kadam (1989), most reports agree that sprouting treatment of cereal grains generally improves their vitamin value, especially the B-group vitamins. Certain vitamins such as α-tocopherol (Vitamin-E) and β-carotene (Vitamin-A precursor) are produced during the growth process (Cuddeford, 1989) .

According to Shipard (2005) - “Sprouts provide a good supply of Vitamins A, E & C plus B complex. Like enzymes, vitamins serve as bioactive catalysts to assist in the digestion and metabolism of feeds and the release of energy. They are also essential for the healing and repair of cells. However, vitamins are very perishable, and in general, the fresher the feeds eaten, the higher the vitamin content. The vitamin content of some seeds can increase by up to 20 times their original value within several days of sprouting. Mung Bean sprouts have B vitamin increases, compared to the dry seeds, of - B1 up 285%, B2 up 515%, B3 up 256%. Even soaking seeds overnight in water yields greatly increased amounts of B vitamins, as well as Vitamin C. Compared with mature plants, sprouts can yield vitamin contents 30 times higher.”

Chelation of Minerals Shipard (2005) claims that - “When seeds are sprouted, minerals chelate or merge with protein, in a way that increases their function.”

It is important to note that while these changes may sound impressive, the comparisons are between dormant non-sprouted seed to sprouted seed rather than comparisons of sprouts to mature vegetables. Compared to dry seeds there are very large increases in nutrients whereas compared with mature vegetables the increase is less. However, a sprout, just starting out in life, is likely to need and thus have more nutrients (percentage wise) than a mature vegetable.

Read more about this topic:  Sprouting

Famous quotes containing the word information:

    So while it is true that children are exposed to more information and a greater variety of experiences than were children of the past, it does not follow that they automatically become more sophisticated. We always know much more than we understand, and with the torrent of information to which young people are exposed, the gap between knowing and understanding, between experience and learning, has become even greater than it was in the past.
    David Elkind (20th century)