Correspondence With Nonlinear Connections
A semispray H on a smooth manifold M defines an Ehresmann-connection T(TM\0) = H(TM\0) ⊕ V(TM\0) on the slit tangent bundle through its horizontal and vertical projections
This connection on TM\0 always has a vanishing torsion tensor, which is defined as the Frölicher-Nijenhuis bracket T=. In more elementary terms the torsion can be defined as
Introducing the canonical vector field V on TM\0 and the adjoint structure Θ of the induced connection the horizontal part of the semispray can be written as hH=ΘV. The vertical part ε=vH of the semispray is known as the first spray invariant, and the semispray H itself decomposes into
The first spray invariant is related to the tension
of the induced non-linear connection through the ordinary differential equation
Therefore the first spray invariant ε (and hence the whole semi-spray H) can be recovered from the non-linear connection by
From this relation one also sees that the induced connection is homogeneous if and only if H is a full spray.
Read more about this topic: Spray (mathematics)
Famous quotes containing the word connections:
“The conclusion suggested by these arguments might be called the paradox of theorizing. It asserts that if the terms and the general principles of a scientific theory serve their purpose, i. e., if they establish the definite connections among observable phenomena, then they can be dispensed with since any chain of laws and interpretive statements establishing such a connection should then be replaceable by a law which directly links observational antecedents to observational consequents.”
—C.G. (Carl Gustav)