Spectrum (functional Analysis) - Further Results

Further Results

If T is a compact operator, then it can be shown that any nonzero λ in the spectrum is an eigenvalue. In other words, the spectrum of such an operator, which was defined as a generalization of the concept of eigenvalues, consists in this case only of the usual eigenvalues, and possibly 0.

If X is a Hilbert space and T is a normal operator, then a remarkable result known as the spectral theorem gives an analogue of the diagonalisation theorem for normal finite-dimensional operators (Hermitian matrices, for example).

Read more about this topic:  Spectrum (functional Analysis)

Famous quotes containing the word results:

    For every life and every act
    Consequence of good and evil can be shown
    And as in time results of many deeds are blended
    So good and evil in the end become confounded.
    —T.S. (Thomas Stearns)

    It would be easy ... to regard the whole of world 3 as timeless, as Plato suggested of his world of Forms or Ideas.... I propose a different view—one which, I have found, is surprisingly fruitful. I regard world 3 as being essentially the product of the human mind.... More precisely, I regard the world 3 of problems, theories, and critical arguments as one of the results of the evolution of human language, and as acting back on this evolution.
    Karl Popper (1902–1994)