Special Linear Group - Topology

Topology

Any invertible matrix can be uniquely represented according to the polar decomposition as the product of a unitary matrix and a hermitian matrix with positive eigenvalues. The determinant of the unitary matrix is on the unit circle while that of the hermitian matrix is real and positive and, since, in the case of a matrix from the special linear group the product of these two determinants must be 1, then each of them must be 1. Therefore, a special linear matrix can be written as the product of a special unitary matrix (or special orthogonal matrix in the real case) and a positive definite hermitian matrix (or symmetric matrix in the real case) having determinant 1.

Thus the topology of the group SL(n, C) is the product of the topology of SU(n) and the topology of the group of hermitian matrices of unit determinant with positive eigenvalues. A hermitian matrix of unit determinant and having positive eigenvalues can be uniquely expressed as the exponential of a traceless hermitian matrix, and therefore the topology of this is that of n2-1 dimensional Euclidean space.

The topology of SL(n, R) is the product of the topology of SO(n) and the topology of the group of symmetric matrices with positive eigenvalues. Since the latter matrices can be uniquely expressed as the exponential of symmetric traceless matrices, then this latter topology is that of (n + 2)(n - 1)/2 dimensional Euclidean space.

The group SL(n, C), like SU(n), is simply connected while SL(n, R), like SO(n), is not. SL(n, R) has the same fundamental group as GL+(n, R) or SO(n), that is, Z for n = 2 and Z2 for n > 2.

Read more about this topic:  Special Linear Group