Special Linear Group

In mathematics, the special linear group of degree n over a field F is the set of n × n matrices with determinant 1, with the group operations of ordinary matrix multiplication and matrix inversion. This is the normal subgroup of the general linear group given by the kernel of the determinant

where we write F× for the multiplicative group of F (that is, excluding 0).

These elements are "special" in that they fall on a subvariety of the general linear group – they satisfy a polynomial equation (since the determinant is polynomial in the entries).

Read more about Special Linear Group:  Geometric Interpretation, Lie Subgroup, Topology, Relations To Other Subgroups of GL(n,A), Generators and Relations, Structure of GL(n,F)

Famous quotes containing the words special and/or group:

    Here in the U.S., culture is not that delicious panacea which we Europeans consume in a sacramental mental space and which has its own special columns in the newspapers—and in people’s minds. Culture is space, speed, cinema, technology. This culture is authentic, if anything can be said to be authentic.
    Jean Baudrillard (b. 1929)

    Even in harmonious families there is this double life: the group life, which is the one we can observe in our neighbour’s household, and, underneath, another—secret and passionate and intense—which is the real life that stamps the faces and gives character to the voices of our friends. Always in his mind each member of these social units is escaping, running away, trying to break the net which circumstances and his own affections have woven about him.
    Willa Cather (1873–1947)