In mathematics, a singular point of an algebraic variety V is a point P that is 'special' (so, singular), in the geometric sense that V is not locally flat there. A point of an algebraic variety which is not singular is said to be regular. An algebraic variety which has no singular point is said to be non singular or smooth.
In the case of an algebraic curve, a plane curve that has a double point, such as the cubic curve
- y2 = x2(x + 1)
exhibits at (0, 0), cannot simply be parametrized near the origin. A plot of this curve is below with the singular point at the origin. An example of singular point is when a graph crosses over itself:
The reason for that algebraically is that both sides of the equation show powers higher than 1 of the variables x and y. In terms of differential calculus, if
- F(x,y) = y2 − x2(x + 1),
so that the curve has equation
- F(x,y) = 0,
then the partial derivatives of F with respect to both x and y vanish at (0,0). This means that if we try to use the implicit function theorem to express y as a function of x near y = 0, we shall fail; and indeed no linear combination of x and y is a function of another essentially different one, so that this is a geometric condition not tied to any choice of coordinate axes.
In general for a hypersurface
- F(x, y, z, ...) = 0
the singular points are those at which all the partial derivatives simultaneously vanish. A general algebraic variety V being defined by several polynomials, or in algebraic terms an ideal of polynomials, the condition on a point P to be a singular point of V is that the linear parts of those polynomials are linearly dependent, when written in terms of variables Xi − Pi that make P the origin of coordinates.
Points of V that are not singular are called non-singular or regular. It is always true that most points are non-singular in the sense that the non-singular points form a set that is both open and non-empty.
It is important to note that the geometric criterion for a point of a variety to be singular (mentioned earlier), that it is a point where the variety is not "locally flat", can be very hard to recognize for varieties over a general field. The work of Milnor and others shows that, over the complex numbers, the statement is precisely true in every reasonable interpretation. But, as Milnor points out, over the real numbers "The equation ... can actually be solved for as a real analytic function of " (so that the variety it defines is the graph of a real analytic function, and therefore a real analytic manifold) "but this equation also defines a variety having a singular point at the origin". Obviously the "geometric" meaning of "locally flat" over fields of finite characteristic, or ultrametric fields, is even more vexed.
Read more about Singular Point Of An Algebraic Variety: Singular Points of Smooth Mappings
Famous quotes containing the words singular, point, algebraic and/or variety:
“I dont have any problem with a reporter or a news person who says the President is uninformed on this issue or that issue. I dont think any of us would challenge that. I do have a problem with the singular focus on this, as if thats the only standard by which we ought to judge a president. What we learned in the last administration was how little having an encyclopedic grasp of all the facts has to do with governing.”
—David R. Gergen (b. 1942)
“The parents who wish to lead a quiet life I would say: Tell your children that they are very naughtymuch naughtier than most children; point to the young people of some acquaintances as models of perfection, and impress your own children with a deep sense of their own inferiority. You carry so many more guns than they do that they cannot fight you. This is called moral influence and it will enable you to bounce them as much as you please.”
—Samuel Butler (18351902)
“I have no scheme about it,no designs on men at all; and, if I had, my mode would be to tempt them with the fruit, and not with the manure. To what end do I lead a simple life at all, pray? That I may teach others to simplify their lives?and so all our lives be simplified merely, like an algebraic formula? Or not, rather, that I may make use of the ground I have cleared, to live more worthily and profitably?”
—Henry David Thoreau (18171862)
“True variety is in that plenitude of real and unexpected elements, in the branch charged with blue flowers thrusting itself, against all expectations, from the springtime hedge which seems already too full, while the purely formal imitation of variety ... is but void and uniformity, that is, that which is most opposed to variety....”
—Marcel Proust (18711922)