Singular Homology - Singular Chain Complex

Singular Chain Complex

The usual construction of singular homology proceeds by defining formal sums of simplices, which may be understood to be elements of a free abelian group, and then showing that we can define a certain group, the homology group of the topological space, involving the boundary operator.

Consider first the set of all possible singular n-simplices on a topological space X. This set may be used as the basis of a free abelian group, so that each is a generator of the group. This set of generators is of course usually infinite, frequently uncountable, as there are many ways of mapping a simplex into a typical topological space. The free abelian group generated by this basis is commonly denoted as . Elements of are called singular n-chains; they are formal sums of singular simplices with integer coefficients. In order for the theory to be placed on a firm foundation, it is commonly required that a chain be a sum of only a finite number of simplices.

The boundary is readily extended to act on singular n-chains. The extension, called the boundary operator, written as

,

is a homomorphism of groups. The boundary operator, together with the, form a chain complex of abelian groups, called the singular complex. It is often denoted as or more simply .

The kernel of the boundary operator is, and is called the group of singular n-cycles. The image of the boundary operator is, and is called the group of singular n-boundaries.

It can also be shown that . The -th homology group of is then defined as the factor group

.

The elements of are called homology classes.

Read more about this topic:  Singular Homology

Famous quotes containing the words singular, chain and/or complex:

    Each your doing,
    So singular in each particular,
    Crowns what you are doing in the present deeds,
    That all your acts are queens.
    William Shakespeare (1564–1616)

    The name of the town isn’t important. It’s the one that’s just twenty-eight minutes from the big city. Twenty-three if you catch the morning express. It’s on a river and it’s got houses and stores and churches. And a main street. Nothing fancy like Broadway or Market, just plain Broadway. Drug, dry good, shoes. Those horrible little chain stores that breed like rabbits.
    Joseph L. Mankiewicz (1909–1993)

    The money complex is the demonic, and the demonic is God’s ape; the money complex is therefore the heir to and substitute for the religious complex, an attempt to find God in things.
    Norman O. Brown (b. 1913)