Simple Group

In mathematics, a simple group is a nontrivial group whose only normal subgroups are the trivial group and the group itself. A group that is not simple can be broken into two smaller groups, a normal subgroup and the quotient group, and the process can be repeated. If the group is finite, then eventually one arrives at uniquely determined simple groups by the Jordan–Hölder theorem.

Read more about Simple Group:  Structure of Finite Simple Groups, History For Finite Simple Groups, Tests For Nonsimplicity

Famous quotes containing the words simple and/or group:

    If when a businessman speaks of minority employment, or air pollution, or poverty, he speaks in the language of a certified public accountant analyzing a corporate balance sheet, who is to know that he understands the human problems behind the statistical ones? If the businessman would stop talking like a computer printout or a page from the corporate annual report, other people would stop thinking he had a cash register for a heart. It is as simple as that—but that isn’t simple.
    Louis B. Lundborg (1906–1981)

    It is not God that is worshipped but the group or authority that claims to speak in His name. Sin becomes disobedience to authority not violation of integrity.
    Sarvepalli, Sir Radhakrishnan (1888–1975)