Definition
Formally, a simple function is a finite linear combination of indicator functions of measurable sets. More precisely, let (X, Σ) be a measurable space. Let A1, ..., An ∈ Σ be a sequence of measurable sets, and let a1, ..., an be a sequence of real or complex numbers. A simple function is a function of the form
where is the indicator function of the set A.
Read more about this topic: Simple Function
Famous quotes containing the word definition:
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on life (based on wording in the First Edition, 1935)