In mathematics, two quantities are in the silver ratio if the ratio between the sum of the smaller plus twice the larger of those quantities and the larger one is the same as the ratio between the larger one and the smaller (see below). This defines the silver ratio as an irrational mathematical constant, whose value of one plus the square root of 2 is approximately 2.4142135623. Its name is an allusion to the golden ratio; analogously to the way the golden ratio is the limiting ratio of consecutive Fibonacci numbers, the silver ratio is the limiting ratio of consecutive Pell numbers. The silver ratio is denoted by δS.
Mathematicians have studied the silver ratio since the time of the Greeks (although perhaps without giving a special name until recently) because of its connections to the square root of 2, its covergents, square triangular numbers, Pell numbers, octagons and the like.
The relation described above can be expressed algebraically:
The silver ratio can also be defined by the simple continued fraction :
The convergents of this continued fraction (2/1, 5/2, 12/5, 29/12, 70/29, ...) are ratios of consecutive Pell numbers. These fractions provide accurate rational approximations of the silver ratio, analogous to the approximation of the golden ratio by ratios of consecutive Fibonacci numbers.
Read more about Silver Ratio: Silver Means, Paper Sizes and Silver Rectangles
Famous quotes containing the words silver and/or ratio:
“the hatchlings wake in the swaying branches,
in the silver baskets,
and love the world.
Is it necessary to say any more?
Have you heard them singing in the wind, above the final fields?
Have you ever been so happy in your life?”
—Mary Oliver (b. 1935)
“Personal rights, universally the same, demand a government framed on the ratio of the census: property demands a government framed on the ratio of owners and of owning.”
—Ralph Waldo Emerson (18031882)