Relation To Separation Axioms and Separated Spaces
The separation axioms are various conditions that are sometimes imposed upon topological spaces which can be described in terms of the various types of separated sets. As an example, we will define the T2 axiom, which is the condition imposed on separated spaces. Specifically, a topological space is separated if, given any two distinct points x and y, the singleton sets {x} and {y} are separated by neighbourhoods.
Separated spaces are also called Hausdorff spaces or T2 spaces. Further discussion of separated spaces may be found in the article Hausdorff space. General discussion of the various separation axioms is in the article Separation axiom.
Read more about this topic: Separated Sets
Famous quotes containing the words relation to, relation, separation, axioms, separated and/or spaces:
“Unaware of the absurdity of it, we introduce our own petty household rules into the economy of the universe for which the life of generations, peoples, of entire planets, has no importance in relation to the general development.”
—Alexander Herzen (18121870)
“The difference between objective and subjective extension is one of relation to a context solely.”
—William James (18421910)
“Just as children, step by step, must separate from their parents, we will have to separate from them. And we will probably suffer...from some degree of separation anxiety: because separation ends sweet symbiosis. Because separation reduces our power and control. Because separation makes us feel less needed, less important. And because separation exposes our children to danger.”
—Judith Viorst (20th century)
“I tell you the solemn truth that the doctrine of the Trinity is not so difficult to accept for a working proposition as any one of the axioms of physics.”
—Henry Brooks Adams (18381918)
“Substances at base divided
In their summits are united;
There the holy essence rolls,
One through separated souls.”
—Ralph Waldo Emerson (18031882)
“Though there were numerous vessels at this great distance in the horizon on every side, yet the vast spaces between them, like the spaces between the stars,far as they were distant from us, so were they from one another,nay, some were twice as far from each other as from us,impressed us with a sense of the immensity of the ocean, the unfruitful ocean, as it has been called, and we could see what proportion man and his works bear to the globe.”
—Henry David Thoreau (18171862)