Examples
- Any right or left Artinian ring, any serial ring, and any semiperfect ring is semi-local.
- The quotient is a semi-local ring. In particular, if is a prime power, then is a local ring.
- A finite direct sum of fields is a semi-local ring.
- In the case of commutative rings with unity, this example is prototypical in the following sense: the Chinese remainder theorem shows that for a semi-local commutative ring R with unit and maximal ideals m1, ..., mn
- .
- (The map is the natural projection). The right hand side is a direct sum of fields. Here we note that ∩i mi=J(R), and we see that R/J(R) is indeed a semisimple ring.
- The classical ring of quotients for any commutative Noetherian ring is a semilocal ring.
- The endomorphism ring of an Artinian module is a semilocal ring.
- Semi-local rings occur for example in algebraic geometry when a (commutative) ring R is localized with respect to the multiplicatively closed subset S = ∩ (R \ pi), where the pi are finitely many prime ideals.
Read more about this topic: Semi-local Ring
Famous quotes containing the word examples:
“Histories are more full of examples of the fidelity of dogs than of friends.”
—Alexander Pope (16881744)
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)