Selenomonad - History and Description

History and Description

The literature on Selenomonas has roots dating back to the 19th century - and beyond - since the features and movements of living (then unclassified) crescent-shaped microorganisms from the human mouth were first described by Antonie van Leeuwenhoek in 1683. During more recent years the crescent-shaped organism observed in ruminant stomachs has been variously described as:

  • Ancyromonas ruminantium,
  • Selenomastix ruminantium,
  • Spirillum ruminantium,
  • Selenomonas ruminantium ,.

As can be ascertained from the above nomenclature, the genus Selenomonas provides a fascinating history of scientific discovery, involving placement then re-placement in the classification systematics, oscillating between animal and bacterial kingdoms! In early descriptions it was thought to be a protozoan and hence for a while received the name Selenomastix.

The most morphologically interesting members of the selenomonads are undoubtedly the large motile crescents found in the warm anaerobic nutrient-rich microecosystem provided by ruminant rumen, guinea-pig caecum (S. palpitans) and even pockets in the human gingiva (S. sputigena). In the illustrated atlas of sheep rumen organisms of Moir and Masson their organisms nos. 4 and 5 represent two forms of the large Selenomonads. These crescents live only a short time under the light microscope but during that time display a remarkable "tumbling" motion produced by one (or two - during cell division) flagella emanating from a refractile basal body on the concave side, which was first described by Woodcock & LaPage, studied later by Lessel & Breed (with photomicrographic addendum from C. F. Robinow), then by Jeynes, who (mistakenly) interpreted it as a "blepharoplast".

Years later, preparations of native rumen contents were examined for the first time by transmission electron microscopy of thin sections, negative stains and freeze-fracture replicas. and many of the reasons for previous confusion were clarified. The "flagellum" was found to be quite unrelated to the flagellum of ciliate protozoa, instead consisting of a "fascicle" of numerous bacterial-type flagella (each displaying 11-fold subunit symmetry), twisted just outside the cell body into helical bundles to form strong organs of propulsion. The large crescents (which are better described as "bean-shaped") have flagella which are quite differently inserted into the concave side of the cell from those of the smaller species of Selenomonas. The small selenomonads have a rather low number of individual flagella inserted in a longitudinal row along the concave side whereas the large selenomonads have a much larger number, inserted into a circular patch of the cell membrane in the concave side in a close-packed (hexagonal) pattern, each flagellum inserted into a bullet-shaped structure at the cell membrane. Another interesting feature is the refractile body behind the flagella. This is not related morphologically to the ciliate blepharoplast (a "9+2" centriole-related structure found in cryptogams such as cycads, Ginkgo biloba and algae e.g. Euglena and Chlamydomonas). The flagella-associated structure observed in the large selenomonad can perhaps best be described as a "basal sac" formed by special invagination (in-folding) of the "polar organelle" region of the bacterial cell membrane in the middle of the concave side of the organism so that it lies directly behind the flagella. In other bacteria possessing a polar organelle, it is situated around the flagella insertion bases in the cell membrane, but never behind them in the cytoplasm as in the case of the large selenomonad. The large crescents, with their unique morphology, still present many puzzles in their systematics. It is already clear from ultrastructural features that the genus Selenomonas is most probably an artificial classification, bringing together possibly unrelated organisms, simply because of their common possession of crescent morphology and peculiar flagellar insertion location. Successful attempts to maintain the large crescents in continuous culture over short terms have been reported by Prins and http://jdr.sagepub.com/content/88/6/519.full.pdf, but long term culturing has not been possible so far. Genetic sequencing of the large crescents should provide the essential information required to better understand and classify these fascinating organisms.

With regard to the small selenomonads, research on obesity suggests that S. noxia may be an indicator of change in oral microbial ecology and might be directly or indirectly involved in obesity.

Read more about this topic:  Selenomonad

Famous quotes containing the words history and/or description:

    A man acquainted with history may, in some respect, be said to have lived from the beginning of the world, and to have been making continual additions to his stock of knowledge in every century.
    David Hume (1711–1776)

    Do not require a description of the countries towards which you sail. The description does not describe them to you, and to- morrow you arrive there, and know them by inhabiting them.
    Ralph Waldo Emerson (1803–1882)