In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite difference approximation of Newton's method. However, the method was developed independently of Newton's method, and predated the latter by over 3,000 years.
Read more about Secant Method: The Method, Derivation of The Method, Convergence, Comparison With Other Root-finding Methods, Generalizations, A Computational Example
Famous quotes containing the word method:
“There is assuredly no more effectual method of clearing up ones own mind on any subject than by talking it over, so to speak, with men of real power and grasp, who have considered it from a totally different point of view.”
—Thomas Henry Huxley (182595)