Bisection Method

The bisection method in mathematics is a root-finding method which repeatedly bisects an interval and then selects a subinterval in which a root must lie for further processing. It is a very simple and robust method, but it is also relatively slow. Because of this, it is often used to obtain a rough approximation to a solution which is then used as a starting point for more rapidly converging methods. The method is also called the binary search method or the dichotomy method.

Read more about Bisection Method:  The Method, Example: Finding The Root of A Polynomial, Analysis, Pseudocode

Famous quotes containing the word method:

    Argument is conclusive ... but ... it does not remove doubt, so that the mind may rest in the sure knowledge of the truth, unless it finds it by the method of experiment.... For if any man who never saw fire proved by satisfactory arguments that fire burns ... his hearer’s mind would never be satisfied, nor would he avoid the fire until he put his hand in it ... that he might learn by experiment what argument taught.
    Roger Bacon (c. 1214–1294)