Schwarzschild Geodesics - Exact Solution Using Elliptic Functions

Exact Solution Using Elliptic Functions

The fundamental equation of the orbit is easier to solve if it is expressed in terms of the inverse radius u = 1/r


\left( \frac{du}{d\varphi} \right)^{2} = \frac{1}{b^{2}} - \left( 1 - u r_{s} \right) \left( \frac{1}{a^{2}} + u^{2} \right)

The right-hand side of this equation is a cubic polynomial, which has three roots, denoted here as u1, u2, and u3


\left( \frac{du}{d\varphi} \right)^{2} = r_{s} \left( u - u_{1} \right) \left( u - u_{2} \right) \left( u - u_{3} \right)

The sum of the three roots equals the coefficient of the u2 term


u_{1} + u_{2} + u_{3} = \frac{1}{r_{s}}

A cubic polynomial with real coefficients can either have three real roots, or one real root and two complex conjugate roots. If all three roots are real numbers, the roots are labeled so that u1 < u2 < u3. If instead there is only one real root, then that is denoted as u3; the complex conjugate roots are labeled u1 and u2. Using Descartes' rule of signs, there can be at most one negative root; u1 is negative if and only if b < a. As discussed below, the roots are useful in determining the types of possible orbits.

Given this labeling of the roots, the solution of the fundamental orbital equation is


u = u_{1} + \left( u_{2} - u_{1} \right) \, \mathrm{sn}^{2}\left( \frac{1}{2} \varphi \sqrt{r_{s} \left( u_{3} - u_{1} \right)} + \delta \right)

where sn represents the sinus amplitudinus function (one of the Jacobi elliptic functions) and δ is a constant of integration reflecting the initial position. The elliptic modulus k of this elliptic function is given by the formula


k = \sqrt{\frac{u_{2} - u_{1}}{u_{3} - u_{1}}}

Read more about this topic:  Schwarzschild Geodesics

Famous quotes containing the words exact, solution and/or functions:

    In the long-run every Government is the exact symbol of its People, with their wisdom and unwisdom; we have to say, Like People like Government.
    Thomas Carlyle (1795–1881)

    Coming out, all the way out, is offered more and more as the political solution to our oppression. The argument goes that, if people could see just how many of us there are, some in very important places, the negative stereotype would vanish overnight. ...It is far more realistic to suppose that, if the tenth of the population that is gay became visible tomorrow, the panic of the majority of people would inspire repressive legislation of a sort that would shock even the pessimists among us.
    Jane Rule (b. 1931)

    Mark the babe
    Not long accustomed to this breathing world;
    One that hath barely learned to shape a smile,
    Though yet irrational of soul, to grasp
    With tiny finger—to let fall a tear;
    And, as the heavy cloud of sleep dissolves,
    To stretch his limbs, bemocking, as might seem,
    The outward functions of intelligent man.
    William Wordsworth (1770–1850)