Rotation Group SO(3) - Length and Angle

Length and Angle

Besides just preserving length, rotations also preserve the angles between vectors. This follows from the fact that the standard dot product between two vectors u and v can be written purely in terms of length:

It follows that any length-preserving transformation in R3 preserves the dot product, and thus the angle between vectors. Rotations are often defined as linear transformations that preserve the inner product on R3. This is equivalent to requiring them to preserve length.

Read more about this topic:  Rotation Group SO(3)

Famous quotes containing the words length and/or angle:

    At length I heard a ragged noise and mirth
    Of thieves and murderers: there I him espied
    Who straight, Your suit is granted,said, and died.
    George Herbert (1593–1633)

    From whichever angle one looks at it, the application of racial theories remains a striking proof of the lowered demands of public opinion upon the purity of critical judgment.
    Johan Huizinga (1872–1945)