Structure of The Roman Surface
The Roman surface has four bulbous "lobes", each one on a different corner of a tetrahedron.
A Roman surface can be constructed by splicing together three hyperbolic paraboloids and then smoothing out the edges as necessary so that it will fit a desired shape (e.g. parametrization).
Let there be these three hyperbolic paraboloids:
- x = yz,
- y = zx,
- z = xy.
These three hyperbolic paraboloids intersect externally along the six edges of a tetrahedron and internally along the three axes. The internal intersections are loci of double points. The three loci of double points: x = 0, y = 0, and z = 0, intersect at a triple point at the origin.
For example, given x = yz and y = zx, the second paraboloid is equivalent to x = y/z. Then
and either y = 0 or z2 = 1 so that z = ±1. Their two external intersections are
- x = y, z = 1;
- x = −y, z = −1.
Likewise, the other external intersections are
- x = z, y = 1;
- x = −z, y = −1;
- y = z, x = 1;
- y = −z, x = −1.
Let us see the pieces being put together. Join the paraboloids y = xz and x = yz. The result is shown in Figure 1.
|
The paraboloid y = x z is shown in blue and orange. The paraboloid x = y z is shown in cyan and purple. In the image the paraboloids are seen to intersect along the z = 0 axis. If the paraboloids are extended, they should also be seen to intersect along the lines
- z = 1, y = x;
- z = −1, y = −x.
The two paraboloids together look like a pair of orchids joined back-to-back.
Now run the third hyperbolic paraboloid, z = xy, through them. The result is shown in Figure 2.
|
On the west-southwest and east-northeast directions in Figure 2 there are a pair of openings. These openings are lobes and need to be closed up. When the openings are closed up, the result is the Roman surface shown in Figure 3.
|
A pair of lobes can be seen in the West and East directions of Figure 3. Another pair of lobes are hidden underneath the third (z = xy) paraboloid and lie in the North and South directions.
If the three intersecting hyperbolic paraboloids are drawn far enough that they intersect along the edges of a tetrahedron, then the result is as shown in Figure 4.
|
One of the lobes is seen frontally—head on—in Figure 4. The lobe can be seen to be one of the four corners of the tetrahedron.
If the continuous surface in Figure 4 has its sharp edges rounded out—smoothed out—then the result is the Roman surface in Figure 5.
|
One of the lobes of the Roman surface is seen frontally in Figure 5, and its bulbous – balloon-like—shape is evident.
If the surface in Figure 5 is turned around 180 degrees and then turned upside down, the result is as shown in Figure 6.
|
Figure 6 shows three lobes seen sideways. Between each pair of lobes there is a locus of double points corresponding to a coordinate axis. The three loci intersect at a triple point at the origin. The fourth lobe is hidden and points in the direction directly opposite from the viewer. The Roman surface shown at the top of this article also has three lobes in sideways view.
Read more about this topic: Roman Surface
Famous quotes containing the words structure of, structure, roman and/or surface:
“... the structure of our public morality crashed to earth. Above its grave a tombstone read, Be toleranteven of evil. Logically the next step would be to say to our commonwealths criminals, I disagree that its all right to rob and murder, but naturally I respect your opinion. Tolerance is only complacence when it makes no distinction between right and wrong.”
—Sarah Patton Boyle, U.S. civil rights activist and author. The Desegregated Heart, part 2, ch. 2 (1962)
“For the structure that we raise,
Time is with materials filled;
Our to-days and yesterdays
Are the blocks with which we build.”
—Henry Wadsworth Longfellow (18091882)
“The descendants of Holy Roman Empire monarchies became feeble-minded in the twentieth century, and after World War I had been done in by the democracies; some were kept on to entertain the tourists, like the one they have in England.”
—Ishmael Reed (b. 1938)
“If the man who paints only the tree, or flower, or other surface he sees before him were an artist, the king of artists would be the photographer. It is for the artist to do something beyond this: in portrait painting to put on canvas something more than the face the model wears for that one day; to paint the man, in short, as well as his features.”
—James Mcneill Whistler (18341903)