In electronics, when describing a voltage or current step function, rise time is the time taken by a signal to change from a specified low value to a specified high value. Typically, in analog electronics, these values are 10% and 90% of the step height: in control theory applications, according to Levine (1996, p. 158), rise time is defined as "the time required for the response to rise from x% to y% of its final value", with 0%-100% rise time common for underdamped second order systems, 5%-95% for critically damped and 10%-90% for overdamped. The output signal of a system is characterized also by fall time: both parameters depend on rise and fall times of input signal and on the characteristics of the system.
Read more about Rise Time: Overview, Simple Examples of Calculation of Rise Time, Factors Affecting Rise Time, Rise Time in Control Applications
Famous quotes containing the words rise and/or time:
“We cannot be any stronger in our foreign policyfor all the bombs and guns we may heap up in our arsenalsthan we are in the spirit which rules inside the country. Foreign policy, like a river, cannot rise above its source.”
—Adlai Stevenson (19001965)
“The reader uses his eyes as well as or instead of his ears and is in every way encouraged to take a more abstract view of the language he sees. The written or printed sentence lends itself to structural analysis as the spoken does not because the readers eye can play back and forth over the words, giving him time to divide the sentence into visually appreciated parts and to reflect on the grammatical function.”
—J. David Bolter (b. 1951)