Rings of Rhea - Physics

Physics

Simulations suggest that solid bodies can stably orbit Rhea near its equatorial plane over astronomical timescales. They may not be stable around Dione and Tethys because those moons are so much closer to Saturn, and therefore have much smaller Hill spheres, or around Titan because of drag from its dense atmosphere.

Several suggestions have been made for the possible origin of rings. An impact could have ejected material into orbit; this could have happened as recently as 70 million years ago. A small body could have been disrupted when caught in orbit about Rhea. In either case, the debris would eventually have settled into circular equatorial orbits. Given the possibility of long-term orbital stability, however, it is possible that they survive from the formation of Rhea itself.

For discrete rings to persist, something must confine them. Suggestions include moonlets or clumps of material within the disk, similar to those observed within Saturn's A ring.

Read more about this topic:  Rings Of Rhea

Famous quotes containing the word physics:

    The labor we delight in physics pain.
    William Shakespeare (1564–1616)

    Now the twitching stops. Now you are still. We are through with physiology and theology, physics begins.
    Alfred Döblin (1878–1957)

    It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.
    —G.C. (Georg Christoph)