Riemannian Manifolds As Metric Spaces
A connected Riemannian manifold carries the structure of a metric space whose distance function is the arclength of a minimizing geodesic.
Specifically, let (M,g) be a connected Riemannian manifold. Let c: → M be a parametrized curve in M, which is differentiable with velocity vector c′. The length of c is defined as
By change of variables, the arclength is independent of the chosen parametrization. In particular, a curve → M can be parametrized by its arc length. A curve is parametrized by arclength if and only if for all .
The distance function d : M×M → [0,∞) is defined by
where the infimum extends over all differentiable curves γ beginning at p∈M and ending at q∈M.
This function d satisfies the properties of a distance function for a metric space. The only property which is not completely straightforward is to show that d(p,q)=0 implies that p=q. For this property, one can use a normal coordinate system, which also allows one to show that the topology induced by d is the same as the original topology on M.
Read more about this topic: Riemannian Manifold
Famous quotes containing the word spaces:
“Though there were numerous vessels at this great distance in the horizon on every side, yet the vast spaces between them, like the spaces between the stars,far as they were distant from us, so were they from one another,nay, some were twice as far from each other as from us,impressed us with a sense of the immensity of the ocean, the unfruitful ocean, as it has been called, and we could see what proportion man and his works bear to the globe.”
—Henry David Thoreau (18171862)